Database example

One of the basic features of jBPM is the ability to persist executions of processes in the database when they are in a wait state. The next example will show you how to store a process instance in the jBPM database. The example also suggests a context in which this might occur. Separate methods are created for different pieces of user code. E.g. an piece of user code in a webapplication starts a process and persists the execution in the database. Later, a message driven bean loads the process instance from the database and resumes its execution.

More about the jBPM persistence can be found in Chapter 6, Persistence.

public class HelloWorldDbTest extends TestCase {

  static JbpmConfiguration jbpmConfiguration = null; 

  static {
    // An example configuration file such as this can be found in 
    // 'src/config.files'.  Typically the configuration information is in the 
    // resource file 'jbpm.cfg.xml', but here we pass in the configuration 
    // information as an XML string.
    
    // First we create a JbpmConfiguration statically.  One JbpmConfiguration
    // can be used for all threads in the system, that is why we can safely 
    // make it static.

    jbpmConfiguration = JbpmConfiguration.parseXmlString(
      "<jbpm-configuration>" +
      
      // A jbpm-context mechanism separates the jbpm core 
      // engine from the services that jbpm uses from 
      // the environment.  
      
      "  <jbpm-context>" +
      "    <service name='persistence' " +
      "             factory='org.jbpm.persistence.db.DbPersistenceServiceFactory' />" + 
      "  </jbpm-context>" +
      
      // Also all the resource files that are used by jbpm are 
      // referenced from the jbpm.cfg.xml
      
      "  <string name='resource.hibernate.cfg.xml' " +
      "          value='hibernate.cfg.xml' />" +
      "  <string name='resource.business.calendar' " +
      "          value='org/jbpm/calendar/jbpm.business.calendar.properties' />" +
      "  <string name='resource.default.modules' " +
      "          value='org/jbpm/graph/def/jbpm.default.modules.properties' />" +
      "  <string name='resource.converter' " +
      "          value='org/jbpm/db/hibernate/jbpm.converter.properties' />" +
      "  <string name='resource.action.types' " +
      "          value='org/jbpm/graph/action/action.types.xml' />" +
      "  <string name='resource.node.types' " +
      "          value='org/jbpm/graph/node/node.types.xml' />" +
      "  <string name='resource.varmapping' " +
      "          value='org/jbpm/context/exe/jbpm.varmapping.xml' />" +
      "</jbpm-configuration>"
    );
  }
  
  public void setUp() {
    jbpmConfiguration.createSchema();
  }
  
  public void tearDown() {
    jbpmConfiguration.dropSchema();
  }

  public void testSimplePersistence() {
    // Between the 3 method calls below, all data is passed via the 
    // database.  Here, in this unit test, these 3 methods are executed
    // right after each other because we want to test a complete process
    // scenario.  But in reality, these methods represent different 
    // requests to a server.
    
    // Since we start with a clean, empty in-memory database, we have to 
    // deploy the process first.  In reality, this is done once by the 
    // process developer.
    deployProcessDefinition();

    // Suppose we want to start a process instance (=process execution)
    // when a user submits a form in a web application...
    processInstanceIsCreatedWhenUserSubmitsWebappForm();

    // Then, later, upon the arrival of an asynchronous message the 
    // execution must continue.
    theProcessInstanceContinuesWhenAnAsyncMessageIsReceived();
  }

  public void deployProcessDefinition() {
    // This test shows a process definition and one execution 
    // of the process definition.  The process definition has 
    // 3 nodes: an unnamed start-state, a state 's' and an 
    // end-state named 'end'.
    ProcessDefinition processDefinition = ProcessDefinition.parseXmlString(
      "<process-definition name='hello world'>" +
      "  <start-state name='start'>" +
      "    <transition to='s' />" +
      "  </start-state>" +
      "  <state name='s'>" +
      "    <transition to='end' />" +
      "  </state>" +
      "  <end-state name='end' />" +
      "</process-definition>"
    );

    // Lookup the pojo persistence context-builder that is configured above
    JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
    try {
      // Deploy the process definition in the database 
      jbpmContext.deployProcessDefinition(processDefinition);

    } finally {
      // Tear down the pojo persistence context.
      // This includes flush the SQL for inserting the process definition  
      // to the database.
      jbpmContext.close();
    }
  }

  public void processInstanceIsCreatedWhenUserSubmitsWebappForm() {
    // The code in this method could be inside a struts-action 
    // or a JSF managed bean. 

    // Lookup the pojo persistence context-builder that is configured above
    JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
    try {

      GraphSession graphSession = jbpmContext.getGraphSession();
      
      ProcessDefinition processDefinition = 
          graphSession.findLatestProcessDefinition("hello world");
    
      // With the processDefinition that we retrieved from the database, we 
      // can create an execution of the process definition just like in the 
      // hello world example (which was without persistence).
      ProcessInstance processInstance = 
          new ProcessInstance(processDefinition);
      
      Token token = processInstance.getRootToken(); 
      assertEquals("start", token.getNode().getName());
      // Let's start the process execution
      token.signal();
      // Now the process is in the state 's'.
      assertEquals("s", token.getNode().getName());
      
      // Now the processInstance is saved in the database.  So the 
      // current state of the execution of the process is stored in the 
      // database.  
      jbpmContext.save(processInstance);
      // The method below will get the process instance back out 
      // of the database and resume execution by providing another 
      // external signal.

    } finally {
      // Tear down the pojo persistence context.
      jbpmContext.close();
    }
  }

  public void theProcessInstanceContinuesWhenAnAsyncMessageIsReceived() {
    // The code in this method could be the content of a message driven bean.

    // Lookup the pojo persistence context-builder that is configured above
    JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
    try {

      GraphSession graphSession = jbpmContext.getGraphSession();
      // First, we need to get the process instance back out of the database.
      // There are several options to know what process instance we are dealing 
      // with here.  The easiest in this simple test case is just to look for 
      // the full list of process instances.  That should give us only one 
      // result.  So let's look up the process definition.
      
      ProcessDefinition processDefinition = 
          graphSession.findLatestProcessDefinition("hello world");

      // Now, we search for all process instances of this process definition.
      List processInstances = 
          graphSession.findProcessInstances(processDefinition.getId());
      
      // Because we know that in the context of this unit test, there is 
      // only one execution.  In real life, the processInstanceId can be 
      // extracted from the content of the message that arrived or from 
      // the user making a choice.
      ProcessInstance processInstance = 
          (ProcessInstance) processInstances.get(0);
      
      // Now we can continue the execution.  Note that the processInstance
      // delegates signals to the main path of execution (=the root token).
      processInstance.signal();

      // After this signal, we know the process execution should have 
      // arrived in the end-state.
      assertTrue(processInstance.hasEnded());
      
      // Now we can update the state of the execution in the database
      jbpmContext.save(processInstance);

    } finally {
      // Tear down the pojo persistence context.
      jbpmContext.close();
    }
  }
}